ENANTIOSPECIFIC SYNTHESIS OF C_{20} - C_{28} SEGMENT OF CONCANAMYCIN A: APPLICATION OF DIETHYLISOPROPYLSILYL PROTECTING GROUP

Kazunobu Toshima, Mari Misawa, Kazumi Ohta, Kuniaki Tatsuta,* and Mitsuhiro Kinoshita* Department of Applied Chemistry, Keio University, 3-14-1, Hiyoshi, Kohoku-Ku, Yokohama 223, JAPAN

 $Summary: A complex C₂₀-C₂₈ segment 5 of concanamycin A (1) has been first synthesized$ </u> without side reactions by effective de-O-silylation of 2a, which was constructed from the ethyl ketone 3 by glycosidation with the fluoride 4.

The antibiotic concanamycin $A(1)$ is a major component of concanamycins which were isolated in 1984 by Kinashi et al¹⁾ and belongs to a new class of 18-membered macrolide with a long side chain which incorporates a six membered hemiketal ring having 2-deoxy- β -Drhamnose moiety¹⁾. Concanamycin (1) was identified with the antifungal antibiotics, folimycin and A666-I and inhibits the proliferation of mouse splenic lymphocytes stimulated by concanavalin $A¹$). The absolute configuration of 1 has been established by X-ray crystallographic analysis of its diacetate derivative²⁾. In this article we would like to report the first enantiospecific synthesis of 5 which is a promising C_{20} -C₂₈ segment of concanamycin A, and usefulness of diethylisopropylsilyl (DEIPS) group^{3,4)} as an effective O-protecting group, especially in deprotection of **2a.**

The construction of 2a would be achieved by the glycosidation of the ethyl ketone segment 3 with the sugar segment 4, both of which could be enantiospecifically synthesized from appropriate carbohydrate derivatives. The selective formation of β -glycosidic linkage of 2-deoxy-D-sugar would become formidable task⁵⁾ and the selection of the protecting groups, R^1 and R^2 should naturally become the key problem in the final stage of the conquest of 5 and 1. Considering these points, we started the construction of 3. The starting material 6⁶⁾ was treated with acetone and catalytic amount of BF3.Et2O (0.6 equiv)³⁾ at 26°C for 17h to afford 7⁷) ([α]_D +21 ° (c 1.26, CHC13)) in one step in 63% yield. Selective 5,6-de-O-isopropylidenation of 7 with 75% AcOH at 30°C for 2.5h gave diol 8^{7}) ([α]_D +15° (c 0.62, CHCl3)) in 72% yield. Periodateoxidation (NaIO₄, acetone-H₂O, 26°C, 1h) of 8, followed by the Wittig reaction of the generated aldehyde with 1.5 equiv, of methoxycarbonylmethylenetriphenylphosphorane at 25°C for 2h afforded desired trans product 9^{7} ([α]_D +52° (c 1.30, CHCl₃)) with high selectivity in 77% overall yield. The Wittig product 9 was treated with DIBAL in toluene under ice-cooling for 0.Sh to give

the crude allylalcohol 10 which was converted (MsCl, LiBr, Et3N, CH₂Cl_{2,} 25°C, 8h) into bromide 11^{7}) ([α]₅₄₆ +0.8° (c 1.20, CHCl₃)) in 81% overall yield from 9. LAH-Reduction (ether, 26°C, 4h) of 11 proceeded cleanly to afford 12^7) ([α]_D +11^o (c 1.50, CHCl₃)) in 92% yield. Hydrolysis of 12 (50% AcOH-H₂O, 80°C, 0.5h) followed by LAH-reduction (THF, 70°C, 2.5h) afforded the triol, which was subjected to the selective protection of the 1,2-diol with carbonate (1.3equiv *N,N'* carbonyldiimidazole, benzene, 26°C, 2h) and the resulted mono-alcohol 13⁷⁾ (mp 62.5-63.5°C, $[\alpha]_D$ -45° (c 1.38, CHCl₃)) was silylated (DEIPSCl, imidazole, CH₂Cl_{2,} 25°C, 2h) to give 14^{7}) (IR(CHCl₃) v_{max} 1800_{cm}⁻¹, $[\alpha]_{\text{D}}$ -46° (c 0.98, CHCl₃)) in 75% overall yield from 12. Hydrolysis (NaOH, MeOH, 0°C, 2.5h) of 14 followed by selective mono-tosylation (2.5 equiv TsCl, Py, 25°C, 4h) of the primary alcohol and epoxidation (NaOMe-MeOH, CHCl₃, 25°C, 1.5h) gave 15⁷⁾ ($[\alpha]_D$ -10° (c 1.14, CHCl₃)) in 84% yield from 14. Reaction of **15** with 2-ethyl-2-1ithio-l,3-dithiane (5 equiv) (THF, -20°C, lh) afforded the crude 16 whose dithioacetal group was cleaved (1:1 HgCl₂-HgO, 80% acetone-H₂O, 0°C, 0.5h) to give the pure ketone 3⁷) (IR(CHCl₃) v_{max} 1709 cm⁻¹, [α]_D +6.9°, (c 0.46, CHCl₃)) in 72% overall yield from 15.

2-Deoxy-D-glucose was selected as the starting material for the construction of 4. Benzyl glycosidation (BzlOH, BF3 · Et2O, 80°C, 3h) of 2-deoxy-D-glucose, followed by selective iodonation (1.4 equiv I₂, 1.5 equiv PPh₃, 3.0 equiv imidazole, 70°C, 2h) afforded 17^{7} which was subjected to Bu₃SnH-reduction (AIBN, 80°C, 3h) to give 18⁷⁾ in 71% overall yield from 2-deoxy-D-glucose. Mono silylation (1.2 equiv DEIPSCI, 1.3 equiv imidazole, CH₂Cl₂, 25°C, 3h) proceeded cleanly with high selectivity to afford 197) whose free alcohol was carbamoylated (1. Chloroacetyl isocyanate, CH₂Cl₂, 0°C, 1h; 2. Zn, MeOH, 25°C, 5h)⁸⁾ to afford 20⁷⁾ in 88% overall yield from 18. **20** was hydrogenerated by H₂ in the presence of Pd(OH)₂ in dioxane at 25°C for 4h to give 21⁷⁾ in 97% yield. Conversion of the free sugar 21 into the fluoride was accomplished by using 1.2 equiv. of DAST⁹⁾ in THF-ether (2:1) (-30 \rightarrow +25°C, 20 min) to afford 4⁷⁾ (mp 103.5-104.5°C, [α]_D +21°, (c 1.10, CHCl₃)) in 86% yield $(\alpha/\beta=14/1)$.

The glycosidation of 4 to the hydroxy group of 3 was best effected by carefully modified Mukaiyama method 10) (1 equiv 3, 1 equiv 4, 1 equiv SnCl₂, MS 4A, CH₂Cl₂, -50°C, 3h then -40°C, 5h) to give the desired β -glycoside $2a^{7}$ (mp 141-142°C, $[\alpha]_D$ -15°, (c 1.00, CHCl3)) with moderate selectivity in 30 $%$ yield. By the procedure described in the synthesis of 2a, the another segment $2b^{7}$) (mp 150-151°C, [α]_D -11°, (C 0.82, CHCl₃)) was also prepared by using only TBDMS-C1 as the silylating agent. In the deprotection of 2a and 2b, mild acidic condition was used without side reactions instead of tetrabutylammonium fluoride as the deprotection reagent because of, their labile β -ketol type structure^{3,11)}. Treatment of 2b with AcOH:1%KF \bullet HF(aq):THF (3:1:3) did not give the desired 5 even at 30 \degree C for 46 h but gave 22⁷⁾ in 94% yield. In contrast to this fact, the desilylation of 2a by AcOH:1%KF \bullet HF(aq):THF (3:1:3) (30°C, 46h) proceeded smoothly to afford 5^{7}) (mp 170-171°C, [a]_D -29°, (c 0.72, MeOH)) in 83% yield.

Thus C_{20} -C₂₈ segment 5 of concanamycin A which is a promising key intermediate for the synthesis of 1 has been first synthesized by effective use of DEIPS group which was recently developed³⁾ and characterized⁴⁾ in our laboratories. Improvement of the glycosidation of 4 with 3 is now under study.

 $\mathbf{1}$

 $2a:R¹=R²=DEIPS$ $2b:R^1=DEIPS, R^2=TBDMS$

 $4:REDEIPS$

 $5:R=H$ $22:R=TBDMS$

 $8:R=H$

Me $\overline{9}$

COOMe

 $10:R=OH$ $11:R=Br$ $12:R=H$

Me

 $13:R=H$ $14:REDEIPS$

19: $R^1 = BzI$, $R^2 = DEIPS$, $R^3 = H$
20: $R^1 = BzI$, $R^2 = DEIPS$, $R^3 = COMH_2$
21: $R^1 = H$, $R^2 = DEIPS$, $R^3 = COMH_2$ $17:R = I$ $18:R=H$

Acknowledgement: We are grateful to the Institute of Microbial Chemistry for the generous support of our program. Financial support by the Ministry of Education, Science and Culture (Grant-in-Aid Scientific Research) is deeply acknowledged. We also thank Messrs. S. Nishimura and A. Asai for their technical assistance.

References and Notes;

- 1). H. Kinashi, K. Someno, K. sakaguchi, J. Antibiot., 37, 1333 (1984).
- 2). J.W. Westley, C. -M. Liu, L. H. Sello, R. H. Evans, N. Troupe, J. F. Blount, A. M. Chiu, L. T. Todaro, and P. A. Miller, J. Antibiot., 3_7,7 1739 (1984).
- 3). (a) K. Toshima, K. Tatsuta. M. Kinoshita, Tetrahedron Lett., 27, 4741 (1986); (b) K. Toshima, K. Tatsuta. M. Kinoshita, Bull. Chem. Soc. Jpn., 61, 2369 (1988).
- 4). K. Toshima, S. Mukaiyama, M. Kinoshita, K. Tatsuta, Tetrahedron Lett., preceding paper.
- 5). For very recent papers on β-glycoside formation see: (a) D. Kahne, D. Yang, J. J. Lim, R. Miller, and E. Paguage, J. Am. Chem. Soc., 110, 8716 (1988); (b) K. E. Clode and A. H. Wright, J. Chem. Soc., Chem. Commun., 1988, 1461. (c) M. Perez and J. -M. Beau, Tetrahedron Lett., 30, 75 (1989).
- 6). T. D. Inch and G. L. Lewis, Carbohydr. Res., 15. 1 (1970).
- 7). All compounds were purified by silica gel column chromatography and were fully characterized by spectroscopic means and elemental analyses. Optical rotations were mesured using a 0.2dm or 0.5dm tube at 25°C. Melting points were uncorrected. Significant ¹H-NMR spectra [δ (TMS), J(Hz)] are the following. 3: (270MHz, CDCl3) 0.55-0.7 (4H, m), 0.94 (3H, d, J=7.8), 0.95-1.05 (13H, m), 1.06 (3H, t, J=7.6), 1.51 (1H, ddt, J=7.8, 4.4, 2.0), 1.71 (3H, d, J=4.8), 2.32 (1H, dd, J=15.6, 4.0), 2.49 (2H, dq, J=7.6, 2.0), 2.69 (1H, dd, J=15.6, 7.2), 3.52 (1H, br s, OH), 4.12(IH, ddd, J=4.4, 4.4, 1.2), 4.5I (1H, ddd, J=7.2, 4.0, 2.0), 5.45-5.7 (2H, m). 4: (270MHz, CDCl3) 0.55-0.7 (4H, m), 0.9-1.05 (13H, m), 1.25 (3H, d, J=6.4), 1.81 (1H, dddd, J=40.4, 13.8, 11.0, 2.4), 2.28 (1H, dddd, J=13.8, 9.8, 6.0, 1.6), 3.91 (1H, dq, J=10.0, 6.4), 4.07 (1H, ddd, J=11.0, 10.0, 6.0), 4.54 (1H, dd, J=10.0, 10.0), 4.65- 4.8 (2H, m), 5.63 (1H, ddd, J=51.8, 2.4, 1.6). 2a: (270MHz, CDCl3) 0.5-0.7 (8H, m), 0.78 (3H, d, J=6.8), 0.9-1.05 (14H, m,), 1.04 (3H, t, J=7.2), 1.15-1.3 (1H, m), 1.21 (3H, d, J=6.2), 1.5-1.65 (1H, m), 1.68 (3H, dd, J=6.2, 1.6), 1.95 (1H, ddd, J=12.8, 5.4, 1.8), 2.35-2.55 (3H, m), 2.77 (1H, dd, J=15.8, 8.4), 3.26 (1H, dq, J=9.6, 6.2), 3.71 (1H, ddd, J=9.8, 8.6, 5.4), 4.13 (1H, dd, J=8.2, 8.2), 4.39 (1H, dd, J=9.8, 9.8), 4.45-4.55 (1H, m), 4.52 (1H, dd, J=10.0, 10.0), 4.64 (2H, br s), 5.35 (1H, ddq, J=15.6, 8.2, 1.6), 5.55 (IH, dq, J=15.6, 6.2). 5: (250MHz, pyridine-d₅) 1.13 (3H, t, J=7.8), 1.17 (3H, d, J=6.3), 1.42 (3H, d, J=6.0), 1.5-1.7 (2H, m), 1.62 (3H, d, J=4.8), 1.94 (2H, q, J=7.8), 2.05-2.25 (1H, m), 2.45-2.6 (2H, m), 3.50 (1H, dq, J=10.0, 6.0), 4.05-4.2 (1H, m), 4.25-4.4 (2H, m), 4.7-4.85 (2H, m), 4.89 (1H, dd, J=9.8, 1.3), 5.01 (1H, dd, J=9.5, 9.5), 5.5-5.75 (2H, m).
- 8). S. Kusumoto, S. Imaoka, Y. Kobayashi, and T. Shiba, Tetrahedron Lett., 23 , 2961 (1982).
- 9). G. H. Posner and S. R. Haines, Tetrahedron Lett., 26, 5 (1985).
- 10). T. Mukaiyama, Y. Murai, and S. Shoda, Chem. Lett., 1981, 431.
- 11). R. F. Newton and D. P. Reynolds, Tetrahedron Lett., 20, 3981 (1979).

(Received in Japan 1 August 1989)